
15-618: Final Project Report
Paulina Davison (pldaviso)

Shrey Bagroy (sbagroy)

Summary:
We evaluate four methods to improve performance of concurrent sequential
scans, which scan a table in-order, for the terrier database. The original design
uses coarse-grained locking. We explore fine-grained locking, duplication of the
data table, using a concurrent data structure, and designing a lock-free list. We
present graphs which highlight the effectiveness of the fine-grained locking
implementation and the lock-free list implementation, displaying the time elapsed
and the number of items processed per millisecond of benchmarks run on an
Intel Xeon Broadwell CPU on the CMU Parallel Data Laboratory network.

Background:
The Terrier Database is designed to support fully autonomous optimization of
hybrid workloads (​https://db.cs.cmu.edu/projects/peloton/​). It is an in-memory,
column-store database.

Our project improves the scan and insert functionality of the Terrier Database.
The scan function implements a sequential scan of data, meaning that a thread
reads contiguous data from as many of the blocks as it needs to. The scan
function takes as inputs the context of the transaction that is requesting the scan,
an iterator that marks the starting position of the scan, and a buffer that will be
populated with the scanned tuples. The buffer parameter can be considered its
output. The insert function inserts a new tuple into a free slot in the blocks. The
ordering of the tuples does not matter, which allows different threads to insert
into different blocks, allocating a new block and appending it to the list if needed.
The insert function takes as inputs the context of the transaction that is
requesting the insert and the tuple to insert. The insert function outputs the
physical location, the block and offset in the block, that represents where the
tuple was inserted.

The key data structure of this project is the data table, which stores the tuples of
a single SQL table. The system requires that the data table be composed of

https://db.cs.cmu.edu/projects/peloton/

blocks that each store a set of tuples. In the Terrier Database design, each block
is 1 MB. Though the order of the blocks does not matter, the system must be
able to determine when a new block needs to be allocated. Blocks are allocated
lazily, which means that a new block will only be allocated if all other blocks are
full or unavailable because they are being inserted into by another thread.
Though the data table must support scanning and inserting tuples, it is not
required to support deleting tuples. This also means that the data structure used
to implement the data table does not need to support deletion. In the original
design, the data table is a doubly linked list of blocks, implemented by the
Standard Template Library (STL) list. In the process of improving parallelization,
we explore other possibilities including using a concurrent ordered map and
using a singly linked list.

In the original design of the scan function, there are two places that locks are
being used (in databases they are called latches - please overlook this - the
implementation uses spin locks). Both are for iterators. The first is in a function
called end() that is used to update the pointer to the last block of the linked list.
The end pointer will either point to the last partially filled block in the list or the
nullptr at the end of the list, if the last block is full:

A lock is taken in the end function to make sure that the end pointer is not being
updated by multiple threads simultaneously. The overloaded operator ++ also
takes a lock. This operator is responsible for moving a pointer to the next tuple in
a block or, if at the end of a block, the next block.

In the scan function there is a pointer defined as start_pos, which points to an
attribute in the block. There is a while loop that supports the start_pos pointer in
moving through each of the tuple attributes in the blocks. In this while loop
predicate, the end function is being called to determine that the start_pos pointer
is still in scope. In the while loop before the next loop is run, the ++ operator is
called on the start_pos pointer to move it to the next tuple. This means that locks
are taken twice in every while loop iteration. In addition, since both of these locks
are being updated at the tuple-level, not the block-level, they are being acquired
more often than is necessary. In this design, The bottleneck to the system is the
iterator and the locking that is being done to support it.

Though the scan function and insert function are both amenable to data
parallelization, e.g. scanning or inserting a vector of tuples rather than individual
tuples, the system currently provides the flexibility to specify any number of
tuples to be scanned and requires that only one tuple be inserted at a time. We
chose to work within this design decision.

To measure the performance of our improvements, we chose to use the metrics
of time to complete each benchmark and the number of tuples (in the millions)
that were processed per second. The first metric provides a measure of the
speedup obtained. The second provides a measure of throughput, which is
important because of the system may want to support a large number of tuples
(in the millions) being concurrently scanned and/or inserted.

Approach
In this section, we discuss the methodology that we followed in order to make
inserting into and reading the database more efficient. We provide the following
as an overview of our pipeline:

● Writing benchmarks: Evaluate the current (baseline) implementation and
test our implementations against the baseline.

● Fine-grained locking: Locking specific parts of the code as opposed to
holding the lock throughout the function execution.

● Data table copy: Providing a snapshot of the data table (i.e linked list) to
the iterator as opposed to the most up-to-date version.

● Lock free iterator functions: Removing locks from iterator++() and
iterator.end()

● Concurrent data structures: Using unordered maps to swap out the
underlying linked list.

● Lock-free list: Modifying the underlying linked list to allow for lock-free
insertion.

For coherence, we provide this pipeline all together in this order, however, the
subsequent methods we mention came as a result of analyzing the results of the
previous steps and brainstorming about the best possible next steps. We provide
all our methodology in this section and present the results (what did/didn’t work)
as a part of the next section.

We start with the existing implementation of the Terrier codebase available in this
repository​. The codebase for Terrier is written in C++, the specifics can be found
on the ​wiki​. As a result, all the code we wrote as a part of this project is also in
C++. Throughout the project, we worked with a shared address space model
which is the programming model that Terrier uses. Thanks to the DB lab, we got
access to an Intel Xeon Broadwell CPU (E5-2630 v4 @ 2.20GHz) on the CMU
Parallel Data Laboratory network, which we use for all of our experiments. This
CPU has two sockets with 10 cores per socket and 20 threads per socket.

Since our task was to improve a specific parallel component (inserting/reading
from the database), we do not change the underlying paradigm and instead

https://github.com/cmu-db/terrier
https://github.com/cmu-db/terrier/wiki/System-Setup

maintain consistency with the rest of the codebase. We now elaborate on each
step of our pipeline.

Benchmarking
Our task is to improve the current implementation of database insertions and
reads in the Terrier system. In order to measure the performance of the current
(baseline) implementation and evaluate the improvement in performance through
our experiments, we first needed to write some performance benchmarks.

The first benchmark(s) we write is called the ConcurrentScanXX. This
benchmark highlights the ​Scan()​ operation in the terrier database which reads
through the database. This benchmark has XX number of threads (varying from 1
to 32) which indicates the number of concurrent threads scanning the database.
The benchmark creates a dummy database, inserts 10 million tuples and then
spawns XX threads to scan through the database. Each thread is mapped to a
physical (or virtual, in the case of >20 threads) core.

As described in the background section, the bottleneck for the read/insert
operations is the iterator. Specifically, the current implementation of the iterator
requires locks whenever we read the end of the iterator or try to increment its
position. This bottleneck is what is (primarily) responsible for the suboptimal
performance we find in the ConcurretScanXX benchmarks. To expose this
bottleneck, we write the ConcurrentIteratorXX benchmark which first builds a
dummy database (as above) and then simply traverses the blocks (not the
individual tuples) in the database.

The two benchmarks mentioned above insert tuples sequentially and then
concurrently read through the database table by calling Scan(). We write the
ConcurrentInsertXX benchmark(s) to evaluate the performance of concurrently
inserting into the database. As a part of this benchmark, each of the XX writers
(again, between 1 and 32) insert 10 million tuples into the database.

Lastly, we write a workload to ensure the correctness of any modifications we
make to the Terrier codebase. Though we ensure throughout development that
our changes pass every existing unit tests written for the database, we write this

https://github.com/cmu-db/terrier/blob/058cb800150c7cc1db789fbcb30845dc5eb305e3/src/storage/data_table.cpp#L40

workload in order to ensure there are no concurrency issues, specifically data
races, occurring between the insert function and the scan function. This workload
uses 16 threads to concurrently scan and insert into the database.

Fine-grained locking
The current implementation for Terrier uses coarse-grained latches (custom
scoped spin locks) to protect the critical section in the database ​insert()​ function
as well as all the operations performed by the database iterator (​operator++()​,
end()​). These latches are acquired at the beginning of these functions and are
held for the entire scope (usually until the end of the function). Our first strategy
is to replace the coarse-grained locking with fine-grained locking. Specifically, we
introduce standard mutexes and wrap them around parts of the code that are not
thread-safe.

Duplicating the data table
Our next strategy specifically targets the latches around the database iterator
operations. We find that the current implementation always acquires a lock when
incrementing the iterator or reading the last block. In an attempt to reduce the
synchronization overhead of acquiring these locks, we experiment with creating a
snapshot (i.e, a copy) of the current database and feeding it to this iterator. As a
result, the iterator only ever works on this acquired local copy which eliminates
the need for locks in these operations completely.

Concurrent data structures
To reduce the amount of time spent on synchronization overhead associated with
acquiring the lock, we attempt to change the underlying database data structure
from a linked list to a concurrent data structure. Concurrent data structures are
intended to allow concurrent insert and update. We use a concurrent ordered
map from Intel’s Threading Building Blocks (TBB) library, which implements
concurrent functionality using both fine-grained locking and lock-free techniques.

Lock-free list
On analyzing the results we obtain from our previous experiments (see the
Results section), we find that the expected behavior of the Terrier database
system allows us to get away with no synchronization at the time of reading from

https://github.com/cmu-db/terrier/blob/058cb800150c7cc1db789fbcb30845dc5eb305e3/src/storage/data_table.cpp#L149
https://github.com/cmu-db/terrier/blob/058cb800150c7cc1db789fbcb30845dc5eb305e3/src/storage/data_table.cpp#L59
https://github.com/cmu-db/terrier/blob/058cb800150c7cc1db789fbcb30845dc5eb305e3/src/storage/data_table.cpp#L72

the linked list as long as we can synchronize linked list inserts. Since the system
does not require a Delete() function, we can get away with a lock-free linked list
that supports Scan() (without locks) and a lock-free implementation of Insert().
The pseudocode for our implementation of the Insert function is as below:

 ​void​ ​insertIntoList​(RawBlock* new_block)
 {
 Node* new_node = ​new​ Node(new_block, ​nullptr​);
 Node* current_last_node = last_node;
 Node* expected_last_node = ​nullptr​;
 ​while
(!current_lastnode.next.compare_exchange_weak(expected_lastnode,
new_node)) {
 ​if​ (expected_last_node) {
 last_node_ = expected_last_node;
 expected_last_node = ​nullptr​;
 }
 }
 last_node_ = new_node;
 }

Results
In this section, we present the results we obtain from the approach we followed.
First, we present the performance statistics from our benchmarks corresponding
to the current implementation of the Terrier database. As discussed in the
Background section, our chosen metrics for performance are: 1) total time taken
and 2) number of (database) items processed per second. The table below
contains the baseline results.

Benchmark Time
elapsed
(ms)

Comparison
with
sequential
version

items
processed/s
ec (in
millions)

Comparison
with
sequential
version

ConcurrentScan1 2513 1.00x 3.79 1.00x

ConcurrentScan2 2997 0.84x 6.36 1.68x

ConcurrentScan4 3562 0.70x 8.43 2.22x

ConcurrentScan8 5541 0.45x 13.75 3.63x

ConcurrentScan16 5548 0.45x 27.53 7.26x

ConcurrentScan32 5708 0.44x 53.46 14.10x

ConcurrentInsert1 3493 1.00x 2.73 1.00x

ConcurrentInsert2 6742 0.52x 2.82 1.03x

ConcurrentInsert4 8211 0.43x 4.64 1.70x

ConcurrentInsert8 11166 0.31x 6.83 2.50x

ConcurrentInsert16 17918 0.19x 8.52 3.12x

ConcurrentInsert32 33989 0.10x 8.98 3.23x

ConcurrentIterator1 772 1.00x 12.35 1.00x

ConcurrentIterator2 1610 0.48x 11.85 0.95x

ConcurrentIterator4 4488 0.17x 8.5 0.69x

ConcurrentIterator8 18329 0.04x 4.16 0.34x

ConcurrentIterator16 60588 0.01x 2.52 0.20x

ConcurrentIterator32 123904 0.006x 2.46 0.19x

Following the discussion from the benchmark section, we know that the
sequential version of all three benchmarks read (or insert, respectively) 10 million
elements each. In the parallel implementations, each thread reads (or inserts) 10
million elements each. As a result, we are trying to achieve a higher workload
within the same amount of time as the sequential version of the program. Thus,
the ideal numbers in column 3, where we compare the elapsed time of the
parallel version with the sequential version, should be 1.00x. For the last column,
where we compare the number of database items processed, the ideal value for
should be equal to the total number of threads, which would indicate a speedup
of that much.

With this context, we evaluate the table above and find an overall poor
performance for all three benchmarks. We find a considerable drop in the time
elapsed (i.e an increased amount of time) for ConcurrentScan/ConcurrentInsert
in column 2 with increasing number of threads. Further, we find that while there is
an increase in the number of database items processed with an increasing
number of threads, this increase is very small and not even close to being
proportional to the number of threads, which is what one expects. This leads us
to conclude that there is a bottleneck somewhere within these functions.

Our hypothesis is that the bottleneck lies in the iterator operations described
earlier, i.e, the iterator increment (​iterator++()​) and reading the last block in the
iterator (​iterator.end()​). To validate this hypothesis, we write the
ConcurrentIteratorXX benchmarks. On evaluating the results corresponding to
these benchmarks, we see that the performance drops substantially with an
increasing number of threads. In fact, the last column showcases a major drop in
the number of database items processed per second, indicating that it is actually
better to use a sequential implementation as opposed to using more than one
thread! Clearly, this benchmark exposes the contention issue between threads
that is plaguing the system.

https://github.com/cmu-db/terrier/blob/058cb800150c7cc1db789fbcb30845dc5eb305e3/src/storage/data_table.cpp#L59
https://github.com/cmu-db/terrier/blob/058cb800150c7cc1db789fbcb30845dc5eb305e3/src/storage/data_table.cpp#L72

Since we validated our hypothesis that the bottleneck is due to synchronization
overhead between threads in the iterator (and the Insert()) function, we then
experimented with a host of different methods to mitigate this bottleneck. For
brevity, we do not provide tables like the one above corresponding to each of the
methods we experiment with. We provide speedup plots for the intermediate
methods and a table for the best speedup we found across all our methods.

Fine-grained locking​: We moved to a fine-grain locking scheme as opposed to
having a function-wide (or scope-wide) latch. We see some minor improvements
following this method, however, the speedup and increase in number of items
processed is not substantial (plots below).

Duplicating data table​: Our next idea was to duplicate the entire data table itself
at the time of a concurrent read. This would allow the reader to work on a local
copy of the database nodes, which would eliminate any contention with other
threads since each would have a local copy of its own. However, a concern we
had was in the situation that, at the time of a read, if another thread tries to insert
into the database, the reader would have an outdated end() point of the iterator

since it is working on a local copy. Since this concern was more about the
expected behavior of the database, we took this idea/concern to Matt (PhD
student in the DB lab) and brainstormed the desired behavior. After diving deep
into the required behavior of the database and the workloads it is built to handle,
we discovered that we can get away with a Read() to the database having a
“stale” end() pointer, i.e, ​a Scan() through the database does not need to
represent the most up to date linked list​. Once we established this theoretically,
we realized that we could get away with no locks at all. As a result, we
abandoned this idea and move to a lock-free iterator.

Lock free iterator functions: ​The concerns with read-write conflicts are that: 1)
we want up-to-date information, and 2) there might be a consequential
write-after-read which could potentially lead to incorrectness in the system.
According to the expected behavior of the Terrier database, neither of these
factors is a concern. As a result, we can completely remove locks put in place to
protect the read-write conflict between the scan() function and insert() function.
Specifically, we can entirely remove the latches from the iterator++() and
iterator.end() functions.

While we established the theoretical correctness of the system without these
latches, we still needed to check if this leads to any kinds of invalid memory
accesses. To this end, we write a workload (described in benchmarks) which
concurrently scans and inserts the database. We played around with the
specifications of this workload to make sure there are (more than) enough
situations where there would be a read-write conflict, yet we did not come across
a single segmentation fault or invalid memory access. This experiment was an
additional correctness check for our methodology. Once we passed this test, in
addition to all the others in the system, we ran this version of the code through
the benchmarks. We find a major performance boost in the benchmarks with the
numbers getting a lot closer to the ideal statistics (plots below).

Concurrent data structures: ​Given that we (successfully) removed locks from
the iterator functions, which primarily impact the Scan() function, our last
bottleneck is the synchronization overhead of the lock in the Insert() function.
Since concurrent data structures are meant to support concurrent inserts, we
decided to replace the underlying linked list with a concurrent data structure that
would allow concurrent inserts, ideally a concurrent linked list.

However, TBB does not have a linked list concurrent data structure. Instead it
provides unordered/ordered sets and unordered/unordered maps. We first tried
to use the unordered/ordered set because it fit the application requirements in
two ways: the relational model used by the database does not require a specific
ordering of inserted tuples and the library guarantees that any iterator that is
currently traversing the list will “see” its members in the same order, which is
required by the Scan() function. However, we soon realized that the Insert()
function requires a consistent view of the last block in the data structure in order
to realize that all the blocks have been filled and that a new block needs to be
inserted. Since the unordered set is implemented internally as a hash map, it
cannot guarantee this. We then tried to use a concurrent ordered map, keeping
an atomically incrementing counter as the key. Unfortunately, we realized that
there was an unavoidable data race between the counter and the insertion into
the concurrent ordered map. As a result, this approach ​did not work​.

Lock-free linked list: ​Since TBB did not support a lock-free implementation of a
linked list, we decided to implement our own. We designed a (singly) linked list
data structure that provides lock-free inserts and reads. The read function is
implemented like a regular linked list; due to the lack of a read-write conflict, we
can get away without any overhead at all. The Insert() function was written as per
the code described in the Approach section. However, due to the large codebase
and, consequently, it’s dependencies between different parts of the code, we are
still working on removing the last few bugs that are turning up because of our
custom implementation.

Final result and best performing implementation: ​Due to the remaining
implementation concerns with our (theoretically) best performing approach, the
best performance we obtain is with the lock-free implementation of the iterator.
The table with its performance on the benchmark workloads and corresponding
speedup plots are below. We omit the results for the ConcurrentInsertXX
benchmark(s) for brevity.

Benchmark Time
elapsed
(ms)

Comparison
with
sequential
version

items
processed/s
ec (in
millions)

Comparison
with
sequential
version

ConcurrentScan1 2424 1.00x 4.71 1.00x

ConcurrentScan2 2425 0.99x 9.34 1.98x

ConcurrentScan4 2673 0.91x 16.99 3.67x

ConcurrentScan8 2633 0.92x 34.69 7.36x

ConcurrentScan16 2693 0.91x 70.44 14.95x

ConcurrentScan32 2606 0.93x 139.73 29.6x

ConcurrentIterator1 592 1.00x 16.1 1.00x

ConcurrentIterator2 599 0.91x 31.84 1.97x

ConcurrentIterator4 652 0.91x 58.6 3.64x

ConcurrentIterator8 692 0.85x 104.66 6.5x

ConcurrentIterator16 1244 0.48x 122.65 7.61x

ConcurrentIterator32 2255 0.26x 135.33 8.4x

Analysis of results:

● We find an enormous increase in the performance as compared to the
baseline numbers from the table earlier. The performance obtained, both in
column 3 and column 5, are close to the theoretical upper bound.

● There is a dip in performance for ConcurrentIterator16 and
ConcurrentIterator32. This can be attributed to the fact that the OS
scheduler starts scheduling threads across different sockets after a certain
threshold of threads (~20) on the Unix machine. As a result, there is an
unavoidable communication overhead once we move beyond a certain
number of threads. Since there is no way to avoid this overhead (on this
machine) or (straightforward) method to quantify the time associated with
this overhead, this is an unvalidated hypothesis. We do not see this dip in
ConcurrentScan16 and ConcurrentScan32 since that is a much larger
workload and the CPU can schedule work in the background (​latency
hiding​).

● The biggest bottleneck in this system at the moment is the synchronization
overhead in ConcurrentInsert; our lock-free linked list would potentially
solve this problem but we are still debugging it.

● The workload was executed on CPUs and not GPUs. This was the correct
choice because the execution environment for the Terrier database is
always going to be CPUs; a GPU dependent database would not be very
successful.

